Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Dichlorotetrakis(3-phenylpyrazole- κN^{2})copper(II)

Magdalena Małecka* and Lilianna Chęcińska

Department of Crystallography and Crystal Chemistry, University of Łódź, Pomorska 149/153, PL-90236 Łódź, Poland
Correspondence e-mail: malecka@uni.lodz.pl

Received 23 January 2003
Accepted 11 February 2003
Online 11 March 2003
In the title compound, $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]$, there are two independent molecules in the asymmetric unit. The Cu^{2+} ions lie on inversion centres and are octahedrally coordinated by two Cl atoms and four pyrazole N atoms. All pyrazole $\mathrm{N}-\mathrm{H}$ groups form intramolecular hydrogen bonds, giving rise to five-membered hydrogen-bonded rings incorporating the Cu atoms.

Comment

This paper is a continuation of our X-ray crystal structure studies on copper(II) chloride complexes incorporating phenylpyrazole ligands (Małecka et al., 1998, 2001). This group of complexes is of interest because of their expected biological activities as fungicides and herbicides (Nasiadek, 1985). Previous studies on copper(II) complexes with different substituted pyrazoles were undertaken with regard to their protolitic properties and the influence of the nature and position of substituents on metal complexation (Kostka \& Strawiak, 1982; Goslar et al., 1987, 1988). On the other hand, we are investigating nitrogen-containing heterocyclic ligands and their complexes because of the expected pharmacological activity, by analogy to cis-platinum complexes (Hollis, 1989; Reedijk, 1996).

(I)

The X-ray structure analysis of the title complex, (I), was carried out in order to elucidate both the geometry around the Cu^{2+} ion and the packing arrangement in the crystal, which is often related to the coordination ability towards transition metal ions (Ochocki et al., 1998).

Compound (I) crystallizes with two crystallographically independent centrosymmetric molecules, A and B, in the asymmetric unit, with the two Cu^{2+} ions located on the centres of symmetry at $(0,0,0)$ and $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$, respectively.

The metal coordination polyhedron is an elongated octahedral bipyramid with two Cl^{-}ions in trans-apical positions and four pyrazole N atoms forming the equatorial plane. The

Figure 1
Views of molecules A (top) and B (bottom), showing the atomnumbering schemes and the intramolecular hydrogen bonds (dashed lines) which give rise to five-membered hydrogen-bonded rings I, II, III and IV. All H atoms, except for H11, H21, H31 and H41 (shown as spheres), have been omitted for clarity. Displacement ellipsoids for nonH atoms are drawn at the 50% probability level.
$\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$ lines deviate by 2.19 (6) and 2.58 (7) ${ }^{\circ}$ from being orthogonal to these equatorial planes for molecules A and B, respectively.

In the two independent molecules, some differences are observed with regard to the rotation of the phenyl and pyrazole rings about the Cn5-Cn51 bond joining them, as shown by the $\mathrm{N} n 1-\mathrm{C} n 5-\mathrm{C} n 51-\mathrm{C} n 52(n=1-4)$ torsion angles (see Table 1).

The orientation of the pyrazole ligands around the metal ions is not the same in the two independent molecules, as indicated by the $\mathrm{Cl}-\mathrm{Cu}-\mathrm{N}-\mathrm{N}$ torsion angles. The different distortions of the ligands in molecules A and B can be explained by the different packing interactions. These interactions are of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots C g$ types $(C g$ are the centroids of pyrazole rings $\mathrm{N} n 1 / \mathrm{N} n 2 / \mathrm{C} n 3 / \mathrm{C} n 4 / \mathrm{C} n 5$, where $n=$ 2 and 3). The geometry for these weak interactions is given in Table 2.

Two intramolecular hydrogen bonds are observed in each molecule, producing four five-membered hydrogen-bonded rings, incorporating the Cu atoms (see Fig. 1), which adopt the following conformations: H11-envelope for ring I, twisted for rings II and IV, and N31-half-chair for ring III. The puckering parameters (Cremer \& Pople, 1975) corresponding to the $\mathrm{Cu}-\mathrm{N} n 2-\mathrm{N} n 1-\mathrm{H} n 1 \cdots \mathrm{Cl}(n=1-4)$ atom sequences are $q_{2}=$ 0.11 (1) \AA and $\varphi_{2}=65(2)^{\circ}, q_{2}=0.18(1) \AA$ and $\varphi_{2}=-142(1)^{\circ}$, $q_{2}=0.28(1) \AA$ and $\varphi_{2}=19(1)^{\circ}$, and $q_{2}=0.19(1) \AA$ and $\varphi_{2}=$ $-144(1)^{\circ}$ for rings I, II, III and IV, respectively.

The bond distances and angles in both molecules are in good agreement with expected values (Allen et al., 1987).

Experimental

The title compound was obtained by mixing hot ethanol solutions of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 5-phenylpyrazole in a 1:4 molar ratio. On cooling to room temperature, a crystalline material began to separate. This material was filtered off and washed three times with cold solvent and dried in vacuo over phosphorus pentaoxide, giving single crystals of the title compound suitable for X-ray analysis.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]} \\
& M_{r}=711.14 \\
& \text { Triclinic, } P \overline{1} \\
& a=11.587(4) \AA \\
& b=12.676(3) \AA \\
& c=13.352(3) \AA \\
& \alpha=81.54(2)^{\circ} \\
& \beta=72.71(2)^{\circ} \\
& \gamma=68.29(2)^{\circ} \\
& V=1738.1(9) \AA^{3} \\
& Z=2 \\
& D_{x}=1.359 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$D_{m}=1.356 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in tetralin and iodomethane
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 22 reflections
$\theta=23.0-31.9^{\circ}$
$\mu=2.60 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, blue
$0.60 \times 0.50 \times 0.25 \mathrm{~mm}$

Data collection

Rigaku AFC-5S diffractometer
ω scans
Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.296, T_{\text {max }}=0.569$
6374 measured reflections
6079 independent reflections
4962 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0958 P)^{2}\right. \\
& +0.0725 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=0.41 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.65 \mathrm{e}^{\AA^{-3}}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0275 (12)

Table 1
Selected geometric parameters ($\AA,^{\circ}$).

$\mathrm{Cu} 1-\mathrm{N} 12$	1.998 (2)	$\mathrm{Cu} 2-\mathrm{N} 42$	1.993 (2)
$\mathrm{Cu} 1-\mathrm{N} 22$	2.027 (2)	$\mathrm{Cu} 2-\mathrm{N} 32$	2.026 (2)
$\mathrm{Cu} 1-\mathrm{Cl} 1$	2.8174 (10)	$\mathrm{Cu} 2-\mathrm{Cl} 2$	2.8226 (10)
$\mathrm{N} 12-\mathrm{Cu} 1-\mathrm{N} 22$	87.39 (10)	N42-Cu2-N32	90.10 (9)
N12-Cu1-Cl1	88.90 (7)	N42-Cu2-Cl2	88.92 (7)
$\mathrm{N} 22-\mathrm{Cu} 1-\mathrm{Cl} 1$	88.1 (2)	$\mathrm{N} 32{ }^{\text {i }}-\mathrm{Cu} 2-\mathrm{Cl} 2$	92.35 (7)
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 12-\mathrm{N} 11$	1.0 (2)	$\mathrm{Cl} 2-\mathrm{Cu} 2-\mathrm{N} 32-\mathrm{N} 31$	-15.8 (2)
N11-C15-C151-C152	-0.6 (4)	N31-C35-C351-C352	-148.2 (3)
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 22-\mathrm{N} 21$	5.7 (2)	$\mathrm{Cl} 2-\mathrm{Cu} 2-\mathrm{N} 42-\mathrm{N} 41$	6.5 (2)
N21-C25-C251-C252	-10.1 (5)	N41-C45-C451-C452	12.9 (4)

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).
$C g 2$ and $C g 3$ are the centroids of the N21- and N31-containing pyrazole rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 11 \cdots \mathrm{Cl} 1$	0.86	2.40	$3.071(2)$	135
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{Cl} 1$	0.86	2.41	$3.081(3)$	135
$\mathrm{~N} 31-\mathrm{H} 31 \cdots \mathrm{Cl} 2$	0.86	2.47	$3.120(3)$	133
$\mathrm{~N} 41-\mathrm{H} 41 \cdots \mathrm{Cl} 2$	0.86	2.41	$3.084(2)$	135
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.93	2.93	$3.805(3)$	158
$\mathrm{C} 155-\mathrm{H} 155 \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.93	2.85	$3.707(4)$	154
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cg} 3^{\mathrm{i}}$	0.93	2.90	$3.638(5)$	137
$\mathrm{C} 455-\mathrm{H} 455 \cdots \mathrm{Cg} 3^{\text {iii }}$	0.93	2.88	$3.693(6)$	146
$\mathrm{C} 456-\mathrm{H} 456 \cdots C g 2^{\text {iv }}$	0.93	2.87	$3.670(5)$	144

Symmetry codes: (i) $x-1, y, z$; (ii) $-x, 1-y, 1-z$; (iii) $1+x, y, z$; (iv) $1-x,-y,-z$.

All H atoms were positioned geometrically ($\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93 \AA$) and refined with a riding model. For the H atoms of the phenyl and pyrazole rings (except for the H atoms of the $\mathrm{N}-\mathrm{H}$ groups), $U_{\text {iso }}$ values were constrained to be $1.2 U_{\text {eq }}$ of the carrier atom. The H atoms of the $\mathrm{N}-\mathrm{H}$ groups were placed in calculated positions and their $U_{\text {iso }}$ values were refined.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1998); software used to prepare material for publication: PARST97 (Nardelli, 1996).

The authors are grateful to Agnieszka Rybarczyk-Pirek for assistance with the X-ray experiments, and also thank Professor K. Kostka and M. Strawiak for supplying the crystals.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1596). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Goslar, J., Szczaniecki, P. B. \& Strawiak, M. M. (1987). Solid State Commun. 62, 169-171.
Goslar, J., Szczaniecki, P. B., Strawiak, M. M. \& Mroziński, J. (1988). Transition Met. Chem. 13, 81-84.
Hollis, L. S. (1989). J. Med. Chem. 32, 128-136.
Kostka, K. \& Strawiak, M. M. (1982). Pol. J. Chem. 56, 895-901.

Małecka, M., Grabowski, M. J., Olszak, T. A., Kostka, K. \& Strawiak, M. (1998). Acta Cryst. C54, 1770-1773.

Małecka, M., Olszak, T. A., Rybarczyk-Pirek, A. \& Kostka, K. (2001). Pol. J. Chem. 75, 1381-1385.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (1989). MSC/AFC Diffractometer Control Software and TEXSAN (Version 5.0). MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nardelli, M. (1996). J. Appl. Cryst. 29, 296-300.
Nasiadek, M. (1985). Diploma thesis, Institute of Chemistry, Faculty of Pharmacy, Medical University of Łódź, Poland.
Ochocki, J., Żurowska, B., Mroziński, J., Kooijman, H., Spek, A. L. \& Reedijk, J. (1998). Eur. J. Inorg. Chem. pp. 169-175.

Reedijk, J. (1996). J. Chem. Soc. Chem. Commun. p. 801.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Version of November 1998. University of Utrecht, The Netherlands.

